
Abstract. The quenching of Li �1s22p; 2P� to Li
�1s22s; 2S� by H2 is considered using coupled-cluster
and multireference con®guration-interaction techniques.
C2v�2A1;

2B2� and C1v�2P; 2R�� sections of the 12A0 and
22A0 potential energy surfaces are determined. The C2v
portion of the 12A0 ÿ 22A0 seam of conical intersection is
studied. Perhaps the most signi®cant ®nding is a
surprising trifurcation of this seam into a portion with
only Cs symmetry and the aforementioned C2v portion.
The adiabatic-to-diabatic state transformation is con-
sidered in the vicinity of the seam of conical intersection
using both perturbation theory and the dipole moment
operator. The 2B2 section of the 22A0 potential energy
surface exhibits an exciplex in the general vicinity of the
seam of conical intersection. The 2P section of the 22A0
potential energy surface possesses a global minimum
lying 1:86 kcal/mol below the Li �2P� �H2 asymptote. A
van der Waals-like minimum with C1v symmetry was
found on the 12A0 potential energy surface.

Key words: Electronic quenching ± Nonadiabatic cou-
pling ± Diabatic states ± Conical intersection

1 Introduction

The quenching of an excited state of an atom by a
diatom is an archetypical example of an electronically
nonadiabatic process. The nonreactive electronic
quenching reaction

Li�1s22p; 2P� �H2�1R�g ; m0; J 0� ! LiH2�22A0�
! LiH2�12A0� ! Li�1s22s; 2S� �H2�1R�g ; m00; J 00�

�1�
is such a process and is the focus of this work. The
nonadiabatic radiationless transition 22A0 ! 12A0 is
facilitated by a seam of conical intersection of these
states which, for C2v geometries, become the 12A1 and
12B2 states. Potential energy surfaces (PESs) for this type
of reaction have been the subject of numerous theoretical
studies [1±22] with the ultimate goal of understanding the
nonadiabatic electronic to vibrational (m), rotational (J ),
and translational energy transfer. This system was also
studied experimentally by Jenkins [23], Wu [24], Elward-
Berry and Berry [25], and Muller and coworkers [26] (for
reviews see Refs. [27, 28]). In particular, using ¯ame
¯uorescence, Jenkins [23] measured the quenching cross
sections of alkali atoms on diatomics and found that
the cross section for quenching of the Li atom by H2,
5.2 AÊ 2, is 1.8 times larger than that for Na by H2.

The importance of conical intersections of the two
lowest states of Li�H2 in quenching process (1) was
®rst appreciated by Krauss [1] and Tully [4, 29]. Krauss
[1] calculated the four lowest potential energy curves of
the Li � H2 system in C2v and C1v geometries and
found crossings only for C2v or T-shaped geometries (see
also Ref. [10]). He also showed that, in contrast to the
situation for Na � H2; at the Hartree-Fock level, the
minimal energy crossing point (MECP) of the 12A1 and
12B2 states of Li�H2 is exoergic relative to Li �2P� �H2

[5]. A multicon®gurational self-consistent ®eld
(MCSCF) level study of the 1; 22A0 PESs was carried out
by Matsumoto and coworkers [9±14]. They also found
the MECP of the 2A1±

2B2 seam of conical intersection to
be exoergic relative to the Li �2P� �H2 asymptote. Of
particular interest in the present context is their ®nding
[10] that an avoided intersection of the 12A0 and 22A0
states exists for c � 45�; although at an energy higher
than that of comparable C2v conical intersections.

Owing to the potential of metal-doped cryogenic H2

as a high-energy density fuel, the Li-H2 van der Waals
interaction has been a topic of recent interest (for current
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studies of Li�H2 interaction relevant to the mechanism
of trapping and attaching Li atoms in matrices see Refs.
[30±33]). Using the method of interacting correlated
fragments, Konowalow [18] determined the dissociation
energy of the complex to be in the range 13±18 cmÿ1.
Chaban and Gordon [19] carried out a thorough study of
the van der Waals Li�H2 complex at the MP4SDQ and
QCISD(T) levels with the augmented correlation-con-
sistent valence-triple-zeta (aug-cc-pVTZ) basis set for H
and the cc-pVTZ basis for Li. They found a complex
with C1v symmetry stable by about 15±17 cmÿ1:

In the present work the electronic structure aspects of
reaction (1) are considered. The C2v and C1v sections of
the 1; 22A0 PESs are explored with particular emphasis on
the 12A0 ÿ 22A0 seam of conical intersection. The present
treatment bene®ts from Meyer's important work in the
area of nonadiabatic chemistry including his description
of the PESs and the seam of conical intersection relevant
to the quenching of Na �2P� by H2 [5], and from his use of
the dipole moment operator to determine a transforma-
tion from an adiabatic to diabatic basis [34].

The preceding discussion has emphasized the con-
ventional view that for reaction (1) accidental conical
intersections of the 12A0 and 22A0 PESs occur only for
C2v sections where the 12A0; 22A0 states have 2A1;

2B2

symmetries while for general Cs geometries only avoided
intersections are found. Quite surprisingly we will show
that this conventional view of the 12A0 ÿ 22A0 seam of
conical intersection is incomplete. Rather the seam of
conical intersection consists of two portions: the C2v
portion noted above and a portion with only Cs sym-
metry that intersects the C2v seam producing a trifur-
cation [35±38]. A locally diabatic basis is constructed
using the dipole moment operator and the residual de-
rivative coupling in this basis is determined.

The remainder of the present work is organized as
follows. Section 2 outlines the theoretical approach: re-
viewing perturbative methods for characterizing a seam
of conical intersection [39] and for locating a trifurcation
[37]. The relation between diabatic bases determined
from derivative couplings and molecular properties op-
erators is also considered. Section 3 presents the results
of the calculations. Section 4 concludes and discusses
directions for future research.

2 Conical intersections, derivative coupling,
and diabatic bases

In this section, we consider the relation between the
derivative couplings and approximate diabatic bases
determined by requiring a molecular property to be
smooth. Further, the characterization of a conical
intersection, the location of a point of trifurcation, and
the perturbative description of electronic dipole operator
matrix elements are reviewed.

2.1 Derivative couplings and diabatic bases

The Born-Huang [40] description of a nonadiabatic
process is employed here. In this approach the total
wavefunction is written as a sum of the form

WT
k �r,R� �

XNa

I�1 vk
I �R�eiAI �R�Wa

I �r;R� � vk�R�y ~Wa�r;R� :
�2�

r denotes the coordinates of the N e electrons and R the
coordinates of the Nnuc nuclei. v�R� are the nuclear
single-valued wavefunctions and Wa�r;R� are the Na real-
valued adiabatic electronic states. The latter are the
eigenstates of the nonrelativistic Born-Oppenheimer
Hamiltonian H e�r;R�
H e�r;R�Wa

I �r;R� � EI�R�Wa
I �r;R� : �3�

eiAI �R� is a phase factor that accounts for the geometric
phase e�ect [41] (for a recent review see Ref. [42] and
references therein). In Wa

I �r;R� and H e�r;R�; a semicolon
separates dynamical from parametrical variables. We
will suppress the r and/or R dependence of a function for
clarity when no confusion results. The derivative cou-
plings, f IJ

s �R� � hWa
I �r;R� @

@s W
a
J �r;R�ir;

�� which couple
Wa

I �r;R� in Eq. (2), satisfy

f IJ
s �R� � EI�R� ÿ EJ �R�� �ÿ1

�
�

Wa
I �r;R�

���� @@s H e�r;R�
����Wa

J �r;R�
�

r

�4�

where the subscript r denotes integration over all
electronic degrees of freedom.

Rx is a point of conical intersection of states I ; J �
I � 1 if EI�Rx� � EJ �Rx� and the numerator in Eq. (4) is
nonvanishing for exactly two properly chosen internal
coordinates, sk and sl. In this case, there exists exactly
one, again properly chosen, internal coordinate, sh; for
which the corresponding nonadiabatic derivative cou-
pling f IJ

sh
�Rx� is singular [39]. As a result of this singu-

larity, it is desirable to transform to a diabatic basis [43,
44], Wd

I �r;R�; that removes as much of the derivative
coupling as possible and all the singularity.

To understand the implications of the preceding
statement we restrict our attention to the case of Na � 2:
This case is completely adequate in the vicinity of a
conical intersection and introduces no essential simpli-
®cations. The generalization to the case N a > 2 can be
found in Ref. [45]. In the case of N a � 2; the diabatic
states are obtained by orthogonal transformation of the
adiabatic states:

Wd
I �r;R�

Wd
J �r;R�

� �
� cos a�R� ÿ sin a�R�

sin a�R� cos a�R�
� �

Wa
I �r;R�

Wa
J �r;R�

� �
�5�

which we abbreviate as Wd � u�a�Wa; where a�R� is the
adiabatic-to-diabatic states mixing angle. The above
goals will certainly be met if we require for all s

f d;IJ
s �R� � Wd

I �r;R�
���� @@s Wd

J �r;R�
� �

r

� f IJ
s �R� �

@

@s
a�R� � 0 ; �6�

where f d;IJ
s is the derivative coupling in diabatic basis. The

basis that obeys Eq. (6) is referred to as strictly diabatic.
The formal solution of Eq. (6) is straightforward,
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a�R� � a�R0� �
ZR
R0

fIJ � dR : �7�

a�R0� is the initial value of the mixing angle. Equation
(6) is seen to require that fIJ be the gradient of a scalar.
Then for Eq. (6) to be solvable, the curl of fIJ must
vanish or equivalently the mixed second partial deriva-
tives of a�R� must be equal, that is:

@2

@sk@sl
a�R�ÿ @

@sl@sk
a�R�

� @

@sk
f IJ
sl
�R� ÿ @

@sl
f IJ
sk
�R� � 0 : �8a�

The second condition in Eq. (8a) yields

@

@sk
Wa

I

���� @@sl
Wa

J

� �
r

ÿ @

@sl
Wa

I

���� @@sk
Wa

J

� �
r

�
X

K 6�I ;J

f KI
sk

f KJ
sl
ÿ f KI

sl
f KJ
sk

� �
� 0 : �8b�

McLachlan [46, 47] and Baer [48] ®rst noted the
requirement expressed in Eq. (8a). Mead and Truhlar
[45] proved that, in general, the requirement expressed
by Eq. (8b) is not satis®ed. Since the curl of fIJ does not
vanish, the integral of fIJ is path dependent and a�R�
cannot be determined by Eq. (7).

Note that

so that although fIJ is singular at a conical intersection,
its curl is not.

2.2 Molecular properties and diabatic bases

An alternative to Eq. (7) for the determination of the
adiabatic-to-diabatic mixing angle a�R� is based on the
suggestion of Werner and Meyer [34] (see also MacõÂ as
and Riera [49, 50] and Refs. [51±60]) that the matrix
elements of the electronic dipole moment operator be
used to determine a�R� avoiding entirely the use of
derivative couplings. In order to see the connection
between this suggestion and the above de®nition of the
diabatic basis, fd;IJ � 0; we consider an arbitrary real-
valued Hermitian electronic operator A�r� depending
solely on the electronic variables. Its matrix elements
in the adiabatic basis are AIJ �R� � hWa

I �r;R� jA�r�
Wa

J �r;R�ir; so for each s we obtain an ``equation of
motion'',

@

@s
A�R� � A�R�;Fs�R�� � ; �9�

where, in terms of the Pauli matrices rw;

A�R� � A��R�I� Aÿ�R�rz � AIJ �R�rx �10a�
Fs�R� � i f IJ

s �R�ry �10b�
with A� � �AII � AJJ �=2: Therefore, Eq. (9) can be
rewritten as

@

@s
A�R� � 2f IJ �R� Aÿ�R�rx ÿ AIJ �R�rz� � : �10c�

Using Eq. (10a) in Eq. (10c) gives

@

@s
A��R� � 0;

@

@s
AIJ �R� � 2f IJ �R�Aÿ�R� and

@

@s
Aÿ�R� � ÿ2f IJ �R�AIJ �R� : �11�

Assume that Eq. (8b) is valid. This turns out to be
e�ectively the case near a conical intersection [see Ref.
[61] and the comment following Eq. (8c)]. We wish to
obtain a new basis, ~W � u�b�Wa such that the smooth-
ness property @

@s
~A � 0 is satis®ed. From Eq. (10a) and

the de®nition of ~W; we obtain

~A�R� � u�b�Auy�b� � A�I� �Aÿ cos 2bÿ AIJ sin 2b�rz

� �Aÿ sin 2bÿ AIJ cos 2b�rx : �12�
Then di�erentiating Eq. (12) and using Eq. (11), we
derive

@

@s
~A�R� � @

@s
~A�

� �
I� @

@s
~Aÿ

� �
rz � @

@s
~AIJ

� �
rx

� ÿ2 f IJ
s �

@

@s
b

� �
��AIJ cos 2b� Aÿ sin 2b�rz

� �AIJ sin 2bÿ Aÿ cos 2b�rx� � 0 : �13�
Thus, Eq. (13) is satis®ed provided b � a: This key result
establishes the sense in which diabatic bases give rise to
smooth molecular properties.

Equation (13) also suggests:

tan 2bj�R� �
AIJ cos 2j� Aÿ sin 2j
AIJ sin 2jÿ Aÿ cos 2j

�14a�
� 2 �AIJ �R�=� �AJJ �R� ÿ �AII�R��; �14b�

where j is an arbitrary angle. Here �AIJ �R�
� 
 �Wa

I �r;R�jA�r�j �Wa
J �r;R�

�
r
and �W

a � u�j�Wa: Explicit
di�erentiation of Eq. (14a) shows that bj�R� satis®es Eq.
(6) provided Eq. (9) holds.

Equation (14a) provides a generalization of the angle
aWM which Werner and Meyer [34] proposed to de®ne
an adiabatic-to-diabatic basis transformation via Eq.
(5). aWM � bj�0 with A � lw; the wth component of the
electronic dipole moment operator (w � x; y; or z).
Since bj diagonalizes �A�R�; the j 6� 0 result can be

X
K 6�I ;J

f KI
sk

f KJ
sl
ÿ f KI

sl
f KJ
sk

� �
�
X

K 6�I ;J

Wa
I j @@sk

HejWa
K

D E
r

Wa
J j @@sl

HejWa
K

D E
r
ÿ Wa

I j @@sl
HejWa

K

D E
r

Wa
J j @@sk

HejWa
K

D E
r

�EK ÿ EI��EK ÿ EJ �� �

0@ 1A ; �8c�
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viewed as diagonalizing, not A constructed in the adia-
batic states basis as suggested by Werner and Meyer [34],
but rather A constructed in a basis that di�ers by a ®xed
rotation of the adiabatic basis. bj6�0 produces a diabatic
basis that has a nonzero transition dipole moment. We
will return to Eq. (14) in Sect. 3.6.

2.3 Conical intersections and intersecting seams

Near a conical intersection not all sets of nuclear
coordinates are equivalent. We de®ne a particular
optimal set of coordinates [39] and recapitulate their
relation to the location of intersecting seams of conical
intersection [37].

Wa
I �r;R� are expanded in a basis:

Wa
I �r;R� �

XNCSF

a�1
cI
a�R�wa�r;R� : �15a�

cI�R� satisfy
�H�R� ÿ EI�R��cI�R� � 0 : �15b�
In the numerical treatment described below, wa will be
con®guration state functions (CSFs) [62] constructed
from molecular orbitals which are obtained from a state-
averaged MCSCF (SA-MCSCF) procedure [62].

To analyze the neighborhood of Rx; a point of conical
intersection of the states I and J � I � 1; it is convenient
to introduce a generalized cylindrical polar coordinate
system: with origin at Rx; an xÿ y or gÿ h�Rx� plane
de®ned by the vectors gIJ �Rx� and hIJ �Rx�, and a sub-
space orthogonal to the gÿ h�Rx� plane, gÿ h?�Rx�;
with the axes zi; i � 3ÿ N int: Here

2gIJ
s �R� � �cI�Rx� ÿ cJ �Rx��y@H�R�

@s
�cJ �Rx� � cJ �Rx�� ;

�16a�

hIJ
s �R� � cI�Rx�y @H�R�

@s
cJ �Rx� ; �16b�

and N int is the number of internal nuclear coordinates. It
is also useful to de®ne the vector

2sIJ
s �R� � �cI�Rx� � cJ �Rx��y

� @H�R�
@s

�cI Rx� � �cJ �Rx�� ÿ 2 hIJ
s �R� : �16c�

The gÿ h�Rx� plane is perpendicular to the tangent to
the seam of conical intersection. The x-axis is chosen

along the unit vector x̂ � hIJ �Rx�=khIJ �Rx�k while

the unit vector ŷ � gIJ �Rx�?=kgIJ �Rx�?k determines the

y-axis, where gIJ �Rx�? � gIJ �Rx� ÿ �gIJ �Rx�y � x̂�x̂: The
polar coordinates (q; h) are de®ned by x � q cos h and
y � q sin h: In the case of a three-atom system, the
dimension of gÿ h?�Rx� is 1 and z3 is chosen as the unit
vector parallel to tIJ �Rx� � gIJ �Rx� � hIJ �Rx�: Note that
tIJ is uniquely determined [37] (except as discussed

below) although gIJ �Rx� and hIJ �Rx� are not. This later
observation is a consequence of the degeneracy
EI�Rx� � EJ �Rx�; at Rx which leaves cI�Rx� and cJ �Rx�
de®ned only to within an arbitrary rotation.

Rx is a point of conical intersection provided gIJ �Rx�
and hIJ �Rx� are linearly independent. Signi®cantly, if
gIJ �Rx� and hIJ �Rx� are not linearly independent, so that
ktIJ �Rx�k � 0; then Rx; although not a point of conical
intersection, may be a point of intersection of two seams
of conical intersection [37]. This observation is used later
in Sect. 3.2.

In the neighborhood of Rx; it is convenient to replace
the CSF basis with an alternative basis, ~wI�r;R� analo-
gous to the crude adiabatic basis of Longuet-Higgins
[63]:

~wI �r;R� �
XNCSF

a�1
cI
a�Rx�wa�r;R� �17a�

so that

WI�r;R� �
X

K�I ;J

nI
K�R� ~wK�r;R� �

X
K 6�I :J

NI
K�R� ~wK�r;R� :

�17b�
Then, at R � Rx � dR; n and N can be expanded in a
power series in dR as follows:

nI�R� � ~n
0;I�h� � n1;I�R� � � � � �18a�

NI�R� � N1;I�R� � � � � ; �18b�
where [39] ~n

0�h� � u�k�h�=2�n0�Rx� and n0;IK �Rx� � dKI
and

q�h� cos k�h� � gx cos h� gy sin h;

q�h� sin k�h� � hx cos h
�19a�

q�h�2 � h2x cos
2 h� �gx cos h� gy sin h�2 : �19b�

To ®rst order in displacement dR from Rx;

EI�R� � E�p1�I �R� � sIJ � dRÿ qq�h� : �20�
Furthermore, one may show that for q su�ciently small,
bj�0 is given by [60]

2bj�0�h� � d� k�h� � n p; n � 0;�1; . . . �21�
where the o�set angle, d; satis®es tan d � AIJ=Aÿ:

Equation (21) [60] is a key result for the following
reasons. To ®rst order in perturbation theory,
a�R� � a�p1��R� � ÿk�h�=2 [39]. a�p1� is relevant to the
de®nition of diabatic states in terms of derivative cou-
pling, Eq. (6), in the following sense. It can be shown [39,
64] that �1=q� @@h a�p1��R� � �1=q�f �p1�h exactly cancels the
only singular part of the derivative coupling,
�1=q�f IJ

h �R�; at Rx: The remaining components of the
derivative coupling, f IJ

q and f IJ
zi ; are nonsingular at Rx.

Thus near a conical intersection, Eq. (21) provides the
bridge between a diabatic basis based on derivative
couplings, a � a�p1�; and a molecular-property-based
diabatic basis, a � bj: In fact, it follows from Eq. (21)
that the property-based transformation proposed by
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Werner and Meyer [34] removes completely the singu-
larity in the derivative coupling at Rx [60].

Finally note that perturbation theory also yields a
useful estimate for the dipole and transition dipole mo-
ments in the vicinity of a conical intersection [60]:

l�q! 0; h; zi � 0� � l�p0��h�
� l�I� rx�lÿsink� lIJcosk� � rz�lÿcoskÿ lIJ sink�

�22�
where l� � �lII�Rx� � lJJ �Rx��=2 and

lKL�R� � hWa
K�r;R�jle�r�jWa

L�r;R�ir:

3 Li+H2 PESs and their conical intersections

3.1 Computational prerequisities

The geometry of the Li+H2 complex is speci®ed by the
standard three-body Jacobi coordinates R � �R; r; c�
where r � R�H-H�: The electronic structure calculations
are performed at two levels. The seam of conical
intersection is characterized using second-order con®g-
uration interaction wave functions based on a three-
electron, �5a0; 1a00� orbital active space. In the asymptotic
region this active space is formed by the Li �2s; 2p� and
H�1s� orbitals. The molecular orbitals are determined
from a SA-MCSCF procedure that averages the 1; 22A0
and 12A00 states with weights 0.51, 0.49, and 0.5,
respectively, and employs a �8s3p1d�=�6s3p1d� basis set
[65] on H atoms and a �9s8p2d�basis on Li [18]. At this
level NCSF � 23877.

The PESs are surveyed, and van der Waals structures
are determined, at the CCSD(T)/cc-pVQZ level, which
consists of spin-unrestricted coupled-cluster CCSD(T)
wavefunctions [66] based on the augmented correlation-
consistent valence-quadruple-zeta (aug-cc-pVQZ) basis
set of Dunning [67] for H and a cc-pVQZ basis for Li,
yielding NCSF � 17565. As in the case of the MCSCF/CI
wavefunctions, the 1s orbital on the Li atom is not cor-
related. In the asymptotic region, Rasym � �50; 1:4011; c�
one obtains E12A0 �Rasym� � ÿ8:6055930 and
E22A0 �Rasym� � ÿ8:5378618 hartree using MCSCF/CI
wavefunctions. These values are only 197.2 and
211:5 cmÿ1 higher than E12A0 �Rasym� � ÿ8:60649151 and
E22A0 �Rasym� � ÿ8:53882546 hartree determined at the
CCSD(T)/cc-pVQZ level. Subsequent comparisons will
serve to con®rm the approximate equivalence of the
MCSCF/CI and CCSD(T) treatments suggested by this
comparison. The results at Rasym imply DE�2S! 2P� �
1:843�1:841� eV at the MCSCF/CI[CCSD(T)] level which
is in excellent agreement with the experimental value
1.848 eV [68]. For the remainder of this work energies
will be expressed relative to the corresponding
E12A0 �Rasym� unless otherwise noted.

At the CCSD(T)/cc-pVQZ level, a van der Waals-
like minimum was found on the 12A0 PES at the
C1v structure Rvm � �9:37; 1:4011; 0�� with E12A0 �Rvm�
� 11:3 cmÿ1 (taking a basis set superposition error of
0:9 cmÿ1 into account). This structure is displayed in

Fig. 1. The results are in good accord with the recent
study of Chaban and Gordon [19] who report a collinear
van der Waals minimum at RCG

vm � �9:845; 1:402; 0��
with an energy E12A0 �RCG

vm � � 15 cmÿ1. Also found was
a van der Waals-like saddle point on the ground-
state PES for the perpendicular con®guration
Rvts � �10:66; 1:4011; 90�� with E12A0 �Rvts� � 5:6 cmÿ1,
again in good accord with the results of Gordon
and Chaban, RCG

vts � �10:204; 1:402; 90�� with
E12A0 �RCG

vts � � 9 cmÿ1.
The focus of this work is the nonadiabatic quenching

of Li �2P� by H2. In order to orient the presentation we
begin by discussing the locus of the 12A0 ÿ 22A0 seam of
conical intersection. In subsequent sections, we analyze
the conical intersections and discuss paths to the region
of conical intersection.

3.2 LiH2 1
2A0 ÿ 22A0 conical intersections

3.2.1 The C2v portion

The C2v region of the conical intersection seam between
the states 12A0 and 22A0 is readily anticipated. Table 1
tabulates the points, Rx, which satisfy
�E12A0 �Rx� ÿ E22A0 �Rx�� < 0:02 cmÿ1. On the C2v seam,
Rx is parameterized by r so that RC2v

x �r� � �R�r�; r; 90��.
The superscript C2v will be suppressed when no
confusion resuts. E�Rx�r�� � E12A0 �Rx�r�� as function
of r is displayed in Fig. 2 and tabulated in Table 1. All
Rx�r� with 1.5 a0 < r < 2:2 a0 are exoergic relative to
the reactant asymptote of quenching process (1), i.e.,
E12A0 �Rx�r�� < E22A0 �Rasym� for such values of r. This
portion of the C2v crossing seam becomes accessible
only if the H2 bond is stretched or diluted providing
a manifestation of the bond-stretch attraction or
bond-dilution mechanism discussed by Hertel [28] (see
also Ref. [69] and references therein). For
R�H-H� � 2:3 a0 the crossing point occurs for longer
R and the crossing energy lies above the reactant
asymptote E22A0 �Rasym�.

The MECP on the 12A0 ÿ 22A0 C2v seam of conical
intersection is Rx�1:77� � Rmex � �2:969; 1:770; 90:0��,
where E�Rmex� � 1:124 eV and is exoergic with respect
to E22A0 �Rasym� by �0:7 eV. Rmex is in qualitative
agreement with the results of Matsumoto et al. [9±14],
Rmex � �2:9344; 1:9530; 90�� [11], and Saxe and Yarkony
[70], Rmex � �3:0; 1:9; 90��, and is in satisfactory accord
with the more recent result of Martinez [20],
Rmex � �2:86� 0:01; 1:78� 0:01; 90��.

Table 1 reports and Fig. 2 depicts �jjtIJ �Rx�r��jj along
the seam of conical intersection. The sign convention is
discussed in Ref. [37]. In Fig. 2 it is seen that jjtIJ �Rx�r��jj
attains a maximum at the crossing point
Rx�2:57� � �4:43; 2:57; 90�� for which the energy
E�Rx�2:57�� � 2:48 eV. Figure 2 also demonstrates that
jjtIJ �Rx�r��jj approaches zero in a linear manner as r
approaches 1.28 a0, and also for large r, about 5.0 a0.
The vanishing of jjtIJ �Rx�r��jj for large r (and large R)
re¯ects the (nonconical) degeneracy of Li+H+H con-
®gurations and is of little interest here. However, the
vanishing of jjtIJ �Rx�r��jj at r � 1:28 a0 does indeed re-
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¯ect the existence of a trifurcation of the seam of conical
intersection (see Fig. 3). Equivalently, the trifurcation
represents a con¯uence of the C2v seam with a seam of
only Cs symmetry at Rtri, where Rtri � Rx�1:28� �
�1:85; 1:28; 90��, and E�Rtri� � 6:0 eV.

Although these trifurcations have now been located
for several M±H2 systems, including M=B [38], C [71],
Al [36], and Cl��72� as well as ozone [35], this work
represents the ®rst report of this feature for an alkali
metal atom and raises the question of its existence for
other alkali metal±H2 systems.

3.2.2 The Cs portion

Table 2 presents points on the Cs portion of the
12A0 ÿ 22A0 seam of conical intersection, denoted
RCs

x �c� � �R�c�; r�c�; c� with the superscript Cs sup-
pressed when no confusion results. To each point in
Table 2 there corresponds a mirror image obtained by
the replacement c! 180� ÿ c. E�Rx�87:577��� � 6:227 eV
and E�Rx� increases, as does R�H-H�, as c deviates from
90� (Fig. 4). jjtIJ �Rx�87:577���jj is quite small as expected.
However jjtIJ �Rx�c��jj remains small as c increases.
Comparing the energies plotted in Figs. 1 and 2, one
concludes that the C2v portion of the seam of conical

intersection is absolutely preeminent in quenching
reaction (1).

As noted in the Introduction Matsumoto and co-
workers [10] reported an avoided crossing of the 12A0
and 22A0 states at c � 45�. The seam point
Rx�47:669�� � �1:872; 1:582; 47:669�� is very close to that
point and E�Rx�47:669��� � 8:08 eV lies rather close to
its calculated energy of �8:36 eV [10]. Thus the avoided
intersection is now seen to be a harbinger of the Cs
portion of the seam of conical intersection.

The crossing point Rx�117:485�� � �1:806; 1:386;
117:485�� for E�Rx�117:485��� �6:82 eV is shown in
Fig. 3. The existence of a trifurcation permits loops en-
closing three points of conical intersection. A schematic
of such a loop is also drawn in Fig. 3. Note that it is not
necessary that these three crossing points lie in a com-
mon gÿ h plane as shown.

3.3 Potential energy surfaces

Sections of the 1; 22A0 PESs were considered in order to
establish the energetics associated with reaching the
conical intersection seam. In view of the range of r for
which low-energy C2v conical intersections exist, the

Fig. 1. Geometries and ener-
gies of extrema on the 1, 22A0

and 12A00 PESs of the Li + H2

complex. The ground-state PES
possesses a van der Waals min-
imum in a collinear con®gura-
tion. The 12B2 minimum of the
22A0 PES lies about 1:05 eV
above the product asymptote.
The 2P minimum of the 12A00

PES is located only 0:09 eV
below the reactant asymptote.
The energy of the minimal
energy crossing point is
shown schematically
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12A1; 1
2B2 C2v sections of the 12A0; 22A0 states, are

displayed in Fig. 5 over the range r � 1:0, 1.5, 2.0, 2.5,
3.0, and r � re�H2� � 1:4011 a0 and R � 1ÿ 6 a0.

In this range of R, the 12A1 PES is repulsive. The 12B2

PES is attractive with a global minimum at
RB2

e � �3:136; 1:580; 90��. The H-H bond is diluted by
approximately 0.18 a0 in order to bind the Li atom. RB2

e
is in good agreement with the previous results of
Matsumoto and coworkers, RB2

e � �3:3; 1:5; 90�� [12],
Hobza and Schleyer, RB2

e � �3:22; 1:52; 90�� [15],
Boldyrev and Simons, RB2

e � �3:25; 1:54; 90�� [21], and
Chaban and Gordon, RB2

e � �3:14; 1:58; 90�� [19].
E22A0 �RB2

e � � 1:05 eV, that is about 0.8 eV below
E22A0 �Rasym� (see Fig. 1), in good accord with 1.13 eV
found by Hobza and Schleyer [15], 1.063 eV found by
Boldyrev and Simons [21], and 1.054 eV reported by
Chaban and Gordon [19]. No other minima were found
on this PES.

Figure 5 evinces intersections of the 12A1 and 12B2

PESs at Rx�1:5� � �2:5; 1:5; 90�� with an energy
E�Rx�1:5�� � 1:9 eV, at Rx�2:0� � �3:4; 2:0; 90�� with
E�Rx�2:0�� � 1:3 eV, at Rx�2:5� � �4:3; 2:5; 90�� with
E�Rx�2:5�� � 2:3 eV, and, ®nally, at Rx�3:0� �
�5:2; 3:0; 90�� with E�Rx�3:0�� � 3:3 eV. These results are
in excellent accord with those presented in Table 1

strongly supporting the compatibility of the treatments
used herein.

We next turn to the 12R� and 12P C1v sections of the
1; 22A0 PESs presented for r � 1:0, 1.4, 2.0, 2.5, and
3:0 a0 and R�Li-H1� � 1ÿ 6 a0 in Fig. 6. H1 is de®ned as
the closer H atom to Li. The energy di�erence between
these states at Rasym is 1.841 eV as expected from the
magnitude of the excitation energy DE�2S! 2P� noted
previously. The 12P section of the 22A0 PES is relatively
¯at with a global minimum at R2P

e � �3:673; 1:4; 0�� and
E�R2P

e � � 1:762 eV, that is about 0.09 eV below the re-
actant asymptote (see also Fig.1). However, it is seen
that motion in this region should not lead to quenching

Fig. 3. C2v ÿ Cs trifurcation of the seam of conical intersection

Fig. 2. Energy in eV relative to E12A0 �Rasym� and �ktIJ �Rx�r��k
multiplied by 103 on C2v portion of seam as a function of seam
parameter r (in bohr). See text

Fig. 4. Properties of the Cs seam. Energy in eV relative to
E12A0 �Rasym�; angle in degrees
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since there are no 2R� ÿ 12P intersections over the range
of geometries considered.

3.4 Implication for dynamics

Figure 2 shows the absence of a barrier to the seam of
conical intersections. Thus the seam can be directly
accessed from the reactant channel. It is worth noting,
however, thatRB2

e � �3:136; 1:580; 90��with E22A0 �RB2
e � �

1:051 eV, whereas Rmex � �2:969; 1:770; 90:0�� with the

MECP energy E22A0 �Rmex� � 1:124 eV. Thus the mini-
mum energy path on the 22A0 PES is expected to pass
®rst through the exciplex on the 22A0 PES where the
separation between the E22A0 and E12A0 states is approx-
imately 0.4 eV.

The seam point which is (geometrically) closest to RB2
e

is Rx�1:84� � �3:106; 1:84; 90�� with E22A0 �Rx�1:84��
ÿE22A0 �RB2

e � being only 0.095 eV. Therefore, it can be
anticipated that the formation of the exciplex may favor
nonadiabatic transitions in the region of the crossing
point Rx�1:84�. Further deviations from the minimum
energy path can lead to nonadiabatic transitions over the
range of conical intersection points on the energetically
accessible portion of the seam. It would be interesting to
use trajectory surface hopping techniques to address this
issue [29].

Fig. 5. Two lowest potential energy curves for T-shaped Li�H2

complex with di�erent H-H bond lengths. Energy in eV relative to
E12A0 �Rasym�; distances in bohr
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A qualitative model of the relation between the
crossing point and the ro-vibrational excitation of the
H2 molecule is provided by the bond-dilution model (see
Refs. [28, 69] and references therein). Applying this
model and the ro-vibrational data for H2 [73], it is found
that the nonadiabatic transition at the crossing point
Rx�2:0� causes vibrational-rotational excitation of H2 to
m � 1 and J � 5, whereas a transition at Rx�2:1� allows
higher rotational excitations to J � 8. Further dilution
of the H-H bond, for instance, at the crossing point
Rx�2:57�, promotes the vibrational excitation of the H2

molecule to a higher quantum number, m � 4, and si-
multaneously diminishes its rotational quantum number

to J � 6. Interestingly, Rmex allows only rotational ex-
citation of the quenching H2 molecule to J � 5.

3.5 Analyzing the seam of conical intersection

The energetics, derivative couplings, and the nature of
the diabatic states in the vicinity of the seam of conical
intersection are the key to understanding reaction (1).
The perturbation theory outlined in Sec. 2 can provide a
valuable tool for characterizing this region, obviating the
need for detailed ab initio calculations. Therefore, we
study the performance of perturbation theory and

Fig. 6. Two lowest potential energy curves for the collinear
geometry with r � 1:0; 1:4; 2:0; 2:5, and 3:0 a0. Energy in eV relative
to E12A0 �Rasym�
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Fig. 7a±c. gÿ h�Rx� plane at representative points on
C2v seam. a The x- and b the y-axes of this plane are
connected by a dotted line. c Two pictures of loop
geometries corresponding to angles h1 and h2
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subsequently consider the nature of the diabatic states in
the vicinity of the seam of conical intersection.

3.5.1 Characteristic parameters and the gÿ h plane

In the immediate vicinity of a point of conical
intersection the energy, E�p1�I �R�, the largest and
singular part of the derivative coupling �1=q�fh, and
the electronic dipole moment may be expressed in terms
of the characteristic parameters, gIJ ; hIJ , and sIJ as well
as the dipole moment matrix at the conical intersection,
lKL�Rx��K; L � I; J�. In this analysis, the gÿ h�R�x
plane is a key tool since it guarantees that the
derivative coupling attributable to internal coordinates
perpendicular to that plane is nonsingular at the point
of conical intersection in question. Hereafter we
suppress the superscript IJ in the nonadiabatic deriv-
ative coupling.

Figure 7a and b portrays the vectors de®ning the
gÿ h�Rx� plane at Rx in terms of nuclear displacements,
hIJ and gIJ?. From this ®gures it is seen that for Rmex, the
vector hIJ is largely C2v preserving, describing mainly H-
H stretch and R elongation, whereas gIJ? is primarily
responsible for C2v symmetry breaking. However, in
general, hIJ does not retain C2v symmetry. This is clearly

seen from hIJ and gIJ? at Rx�1:84� which both break C2v
symmetry. This does not re¯ect a ``broken symmetry''
wave function. Rather it is a consequence of the de-
generacy at the conical intersection which permits a two-
dimensional rotation of the states in question. Any
symmetry breaking is evident in the vector tIJ �Rx� which,
as noted previously, is invariant to this mixing.

In this work, all calculations in the vicinity of the C2v
conical intersection seam were, of necessity, performed
within Cs symmetry. These calculations recover the C2v
symmetry of the C2v portion of the seam to an excellent
approximation. The minimal symmetry breaking which
does occur has, however, no consequence on the results
reported in this work. In particular, symmetry breaking
cannot be responsible for the trifurcation reported here

Fig. 8a, b. Results of the loop enclosing Rx�2:57� with q � 0:1 a0. a
The energy E12A0 � E1 is shown by open circles, the ®rst-order
perturbation energy E�p1�

12A0 � Ep
1 by a long dashed line, E22A0 � E2

by open squares, fh by open diamonds, and f �p1�h by a short dashed
line with ®lled diamonds. Energies are taken with respect to
E12A0 �Rasym�. b Residual derivative couplings: f resi

h � fhÿ f �pi�
h ; i � 1

(open circles), 2 (open squares)

Fig. 9a, b. Energies and fh in local neighborhood of Rmex for
loops with a q � 0:05 a0 and b 0:5 a0. Energies are taken with
respect to E12A0 �Rasym�. See caption to Fig. 8. For de®nition of
fh
(y) see sect. 3.6
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since both C2v and Cs points of conical intersection exist
for r > 1:28 a0.

3.5.2 Loop analysis

For each Rx we use the polar coordinate system de®ned
is Sect. 2.3. A closed loop of radius q in the gÿ h plane,
Cq�Rx�r�� surrounding Rx�r� is obtained by varying h
from ÿ180� to �180� for ®xed q and corresponds to a
sequence of nuclear con®gurations. Such a sequence of
con®gurations is shown schematically in Fig. 7c for
Rx � Rmex, where the ath atom possesses its own
gÿ ha�Rx� plane formed by gIJ?

a and hIJ
a given by Eqs.

(16a) and (16b). The associated circle Ca
q in this

gÿ ha�Rx� plane is also drawn. Rotating each atom
along its own circle Ca

q in a concerted manner results in
the loop Cq�Rx�. The nuclear con®gurations of LiH2 in
the neighborhood of the MECP corresponding to two
values of h � h1 and h � h2 are shown by solid and
dashed lines in Fig. 7c.

The loop technique is a valuable tool for investigating
the energetic and geometric neighborhood of the seam.
The circulation of fIJ along a loop of radius q centered at
Rx de®ned as

X �Cq�R�� �
I

Cq�Rj�

fIJ �R� � dR �22�

has the following remarkable property: as
q! 0; X �Cq�R�� ! p if R is a point of conical intersec-
tion, and is zero otherwise [39].

Fig. 10. Results of the loop enclosing Rx�1:5� with q � 0:1 a0. See
caption to Fig. 8. In the bottom panel, the residual nonadiabatic
derivative coupling is given by f res�w�

h � fh ÿ f �w�h �w � x; y�

Fig. 11a, b. Loop C0:05 around Rx�123:330�� � �1:552;
1:448; 123:330��. a Energies E12A0 and E22A0 are shown with respect
to E12A0 �Rasym� together with fh (open diamonds). In the bottom
panel the xth components of the dipole moments as functions of the
angle k are shown. b The residual nonadiabatic derivative couplings
f res1
h � fh ÿ f �p1�h (open circles) and f res�w�

h � fh ÿ f �w�h [w=x (open
squares), y (open diamonds)]
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3.5.3 Energies, derivative couplings,
and dipole moments near Rx

We now analyze the captioned properties along Cq�Rx�
in the gÿ h�Rx� plane. Here we focus on the vicinity of
the crossing points RC2v

x �2:57�;RC2v
x �1:77� � Rmex;

RC2v
x �1:5�, and RCs

x �123:33��; ordered in decreasing
magnitude of jjtIJ �Rx�jj although the analysis may be
repeated for any point of conical intersection using the
characteristic parameters given in Tables 1 and 2. It is
anticipated, and will be demonstrated below, that for a
given q, the reliability of the perturbation treatment will
increase with jjtIJ �Rx�r��jj. It is useful to note that
X �Cq�Rx��=p is approximately 1.00 along all loops
examined in this section, demonstrating that each loop
in fact contains a point of conical intersection.

For Rx�2:57� � �4:43; 2:57; 90�� consider the loop
C0:1�Rx�2:57��: E12A0 and E22A0 ; and the ®rst-order per-
turbation energy E�p1�

12A
are plotted in Fig. 8a. E22A0 is

above E22A0 �Rasym� for all points on this loop so this
region is only accessible for molecules with appreciable
internal energy. The key point here is the good agree-
ment between the perturbative treatment and the explicit
computational results. Two avoided crossings at
h � ÿ160� and 20� with an energy gap
E22A0 ÿ E12A0� � � 0:082 eV are observed. The corre-
sponding structures in Jacobi coordinates are Rx q ��
0:1; h � ÿ160�;Rx�2:57�� � �4:43; 2:57; 86:47�� and
Rx q � 0:1; h � 20�; Rx�2:57�� � � �4:42; 2:58; 93:51�� re-
spectively. Note that the corresponding c sum to about
180�. The slight di�erences in R and r for these points
evince a small symmetry breaking. This small symmetry
breaking was anticipated on the basis of a small
component in the y-direction of tIJ Rx� �2:57��: The de-
rivative couplings fh and f �p1�h are also shown in Fig. 8a.
Figure 8b shows the ith residual derivative coupling
f resi
h � fh ÿ f �pi�

h ; where i � 1 and 2 for the ®rst-order
perturbation treatment and a second-order perturbation
treatment reported elsewhere [61]. From Fig. 8b, one
concludes that the ®rst-order perturbation treatment
covers about 90% of the calculated derivative coupling
and the second order improves it to 97%.

We next turn to an analysis of a neighborhood of the
MECP Rmex � Rx�1:77�. Figure 9 depicts the results for
Cq�Rmex� with q � 0:05 and 0:5 a0. Note that for
q � 0:05, the results of the perturbative treatment and
the actual calculations agree less well than those for
Rx�2:57�. With regard to the derivative coupling, as seen
in the bottom panel of Fig. 9a, a shift by about 10�
between the peaks of fh and its ®rst-order perturbation
estimate f �p1�h is clearly evident. The reason for this can
be inferred from Fig. 2, where it is seen that jjtIJ �Rx�jj
decreases by 45% in going from Rx�2:57� to Rx�1:77�.
This indicates that the size of the ®rst-order terms has
diminished and second-order e�ects, not included in the
perturbative expression for the energy, play an increased
role.

The smaller loop C0:05�Rmex� yields two structures Rx
�q � 0:05; h � ÿ1:35�; Rmex� � �2:968; 1:772; 87:43��
and Rx�q � 0:05; h � 50�; Rmex� � �2:968; 1:775; 92:57��
with rather small energy gaps (�0:023 eV� and large fh
(see bottom panel in Fig. 9a). Note that E22A0 �R� for any

R covered by C0:05�Rmex� with ÿ160� � h � 70� lies be-
low E22A0 �Rasym�.

The results for the larger loop C0:5�Rmex� shown in
Fig. 9b di�er signi®cantly from those of C0:05�Rmex�.
Again two avoided crossing are identi®ed at Rx�q � 0:5,
h � ÿ1:30�; Rmex� � �3:00, 1:84, 64:70�� and Rx�q � 0:5,
h � 40�; Rmex� � �3:01; 1:81; 115:51��. However, here
for each state there is a barrier with the nearly T-
shaped nuclear structure Rx�q � 0:5; h � ÿ43�; Rmex� �
�3:21; 1:12; 89:01�� re¯ecting a signi®cantly compressed
H-H bond. These barriers in turn separate minima
symmetrically disposed about the approximate C2m
maximum at h � ÿ90� and 0� corresponding to
Rx�q � 0:5; h � ÿ90�; Rmex� � �3:14; 1:40; 67:27�� and
Rx�q � 0:5; h � 0�; Rmex� � �3:15; 1:37; 111:90��. For
much of this loop E22A0 lies above E22A0 �Rasym�.

The crossing point Rx�1:5�, which energetically is very
close to the reactant asymptote, is considered next.
Figure 10 shows the results for C0:1�Rx�1:5��. In this case
E22A0 is uniformly endoergic relative to E22A0 . It is seen
that the computed energy and perturbative result di�er
signi®cantly. Also, as shown in the bottom panel of
Fig. 10, the ®rst-order derivative coupling f �p1�h is shifted
from fh, as in Fig. 9a for the MECP. The second-order
derivative f �p2�h does not cure this discrepancy.
f �p2�h ÿ f �p1�h is shown by a dashed line in the bottom
panel of Fig. 10. These di�erences re¯ect the factor of 2
decrease in jjtIJ �Rx�jj in going from Rx�1:77� to Rx�1:5�.
Looking at the behavior of fh reveals the existence of
two avoided crossing points at h � �90� almost sym-
metrically located with respect to h � 0� and corre-
sponding to the slightly C2v distorted structures
Rx�q � 0:1; h � ÿ90�; Rx�1:5�� � �2:39; 1:52; 83:91�� and
Rx�q � 0:1, h � 90�; Rx�1:5�� � �2:40, 1:49, 96:15��. The
point Rx�q � 0:1; h � 0�; Rx�1:5�� � �2:43; 1:37; 89:45��
is characterized by the energy gap E22A0 ÿ E12A0 �
0:25 eV.

Finally we consider the point RCs
x �123:33�� ��1:827; 1:448; 123:33�� using C0:05�Rx�123:33���. The

corresponding energy pro®le is shown in Fig. 11a. The
energetics along this loop di�ers markedly from those
reported previously. The curves appear almost parallel
although avoided crossings near Rx�q � 0:05;
h � ÿ75�; Rx�123:33��� � �1:770; 1:446; 55:57�� and
Rx�q � 0:05, h � 107�; Rx�123:33��� � �1:884, 1:452,
57:79�� are evident from the sharply peaked derivative
couplings. This behavior re¯ects the increased impor-
tance of sIJ �Rx� for the Cs conical intersection points
when compared with the C2v points (see also Tables 1
and 2).

f res1
h is reported in the upper panel of Fig. 11b. From

this data one recognizes that the peaks of f �p1�h are
slightly shifted from those of fh as above. These di�er-
ences are not unexpected in view of the relatively small
value of ktIJ �Rx�123:33���k: Fig. 11a also shows the de-
pendence of the dipole moments lII and lJJ , and the
transition dipole moment lIJ as functions of the angle k
de®ned by Eq. (19). It is clear that the k-dependence of
these dipole moments has a simple oscillatory form (see
Eq. 22). This di�ers markedly from the dependence of
these quantities on h which exhibits the abrupt changes
characteristic of an avoided crossing. Finally note that
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lKL and l�p0�KL are in only qualitative agreement. This
again re¯ects the small value of ktIJ �Rx�123:33���k, since
improved agreement between lKL and l�p0�KL is observed
as ktIJ �Rx�k increases.

3.6 Determination of the adiabatic-to-diabatic
mixing angle

In this section we consider the performance of the
adiabatic-diabatic state transformation, suggested by
Werner and Meyer, in the vicinity of the conical
intersection. In particular, fh determined from the ab
initio wave functions is compared with that deduced from
theWerner-Meyer transformation and from perturbation
theory. This study uses C0:05�RC2v

x �1:77��; C0:1�RC2v
x �1:5��;

and C0:05�RCs
x �123:33���. In the bottom panel of Fig. 9a

we demonstrate the dependence of fh; f �p1�h , and
f �y�h � @

@h blw

j�0 as functions of the loop angle h around
the MECP. Here bly

j�0 is obtained from Eq. (14a) with

A � lw. It is seen that f �y�h essentially reproduces fh in the

whole range of the loop angle and is generally superior to
f �p1�h . In particular, at the peaks of fh the relative error
comprises � 5%.

In Fig. 10 we plot the residual derivative couplings

f res�w�
h � fh ÿ f �w�h (w � x or y) for C0:1�Rx�1:5��. f res�x�

h
slightly deviates from zero in the neighborhood of the
peaks of fh with the maximum deviation comprising
about 3% of the peak magnitude. f �x�h produces better
results than the second-order perturbative treatment, a
not unexpected result in view of the size of ktIJ �Rx�1:5��k.
On the other hand, although f �y�h reproduces fh quite
well, f res�y�

h at h � ÿ60� is about 12% of the actual value
of fh and is about 4 times larger than f res�x�

h .
The residual derivative coupling f res1

h is compared
with f res�x�

h and f res�y�
h for C0:05�RCs

x �123:33��� in Fig. 11b.
Inspecting this ®gure, one arrives at the conclusion that
the derivative couplings obtained by means of the
Werner-Meyer formula rather accurately describe the
calculated derivative coupling and in this case, where
ktIJ �RCs

x �123:33���k is small, are superior to the ®rst-or-
der perturbation estimate.

4 Summary and conclusions

The focus of the present work is the nonreactive
nonadiabatic quenching reaction Li�1s22p; 2P��
H2�1R�g � ! LiH2�22A0� ! LiH2�12A0� ! Li �1s22s; 2S�
�H2�1R�g �. The nonadiabatic transition LiH2�22A0�
! LiH2�12A0� is facilitated by a symmetry-allowed
2B2 ÿ 2A1 seam of conical intersection. The 2B2 section
of the 22A0 state has a bound exciplex at
RB2

e � �3:136; 1:580; 90�� with an energy E22A0 �RB2
e �

lying 0:8 eV below the Li�2P� �H2 asymptote. The point
of closest approach to the exciplex on the seam of
conical intersection is Rx�1:84� � �3:106; 1:837; 90��
with E22A0 �Rx�1:84�� ÿ E22A0 �RB2

e � only 0:095 eV. The

exciplex neighborhood also includes the MECP Rmex �
�2:969; 1:770; 90:0��, for which E22A0 �Rx�1:77��ÿ
E22A0 �RB2

e � � 0:073 eV:
The C2v seam of conical intersection is carefully

studied. For each point on the C2v seam, the gÿ h plane
and the tangent vector, tIJ � gIJ � hIJ are reported.
Determination of the gÿ h plane is the key to the
analysis of a point of conical intersection since this plane
contains the entire linear or conical part of the inter-
secting surfaces. Using the vanishing of tIJ as a criterion
for trifurcation, we are able to show the 12A0 ÿ 22A0
seam actually consists of two portions: the C2v

2B2 ÿ2 A1

symmetry-allowed portion noted above and the Cs por-
tion that intersects the C2v portion near Rx�1:28� � �1:8,
1:28, 90��, with E22A0 �Rx�1:28�� � 6:0 eV. This trifur-
cation of the C2v seam occurs at energies too high to
in¯uence the dynamics of the quenching process. In fu-
ture work it will be interesting to see whether this feature
occurs in other alkali metal±H2 systems.

Energies, derivative couplings, and dipole matrix
elements are determined for closed loops in the gÿ h
plane for points on both the Cs and C2v portions of the
seam of conical intersection. This provides a vivid
picture of the energetics and derivative coupling pat-
terns in the local neighborhood of the seam. The loop
technique inspires us to study possible ways to deter-
mine the adiabatic-to-diabatic mixing angle by means
of some electronic properties and, speaking generally,
also to investigate some properties of nonadiabatic
derivative coupling. We demonstrate that the derivative
coupling obtained by di�erentiating the Werner-Meyer
mixing angle describes rather accurately the (ultimately)
singular part of the derivative coupling near a conical
intersection.

We also calculate sections of the PESs involved in
quenching reaction (1). For collinear geometries we ®nd
that the 2R� PES becomes attractive at ®xed r � 2:42 a0,
while the lowest 2P PES is always attractive, at least for
H-H separations � 1:0 a0, and thus, possesses the global
minimum with R�Li-H1� � 3:673 and r � 1:400 a0. It is
located just 0:09 eV below the reactant asymptote. These
2R� and 2P states do not intersect in the range of r
studied. We also locate a van der Waals-like saddle point
on the ground-state PES for the perpendicular con®gu-
ration Rvts � �10:66; 1:4011; 90�� with an energy of
5:6 cmÿ1 and a van der Waals minimum for the collinear
con®guration with Rvm � �9:37; 1:4011; 0�� character-
ized by a well depth of 11:3 cmÿ1.
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Appendix

Table 1. C2v portion of seam of conical intersection of Li + H2 in Cartesian coordinates

Atom x y hIJ
x hIJ

y gIJ
x gIJ

y

r = 1.1 R = 1.226 E = 19.302 ktIJk = )0.00011
Li 0.0000 1.3577 0.0216 1.5741 )0.7308 1.4915
H 0.5504 0.1312 )0.1419 0.0325 0.9262 )0.2288
H )0.5496 0.1329 0.1211 0.0152 )0.1945 0.3591

sx=0.0713 sy=)0.2794 sz=)1.7265

r = 1.2 R = 1.547 E = 9.852 ktIJk = )0.00007
Li 0.0000 1.3577 0.0097 1.5760 )0.4962 1.3324
H 0.6004 )0.1899 )0.0857 )0.2916 0.8310 )0.7381
H )0.5996 )0.1883 0.0768 )0.3048 )0.3341 0.3853

sx=0.0086 sy=0.0336 sz=)0.8945

r = 1.3 R = 1.8597 E = 5.134 ktIJk = 0.00003
Li 0.0000 1.3577 )0.0015 1.1282 0.2740 1.3364
H 0.6498 )0.5016 1.3292 )0.3918 0.5128 0.1749
H )0.6502 )0.5026 )1.3280 )0.3828 )0.7871 )1.1578

sx=0.0160 sy=0.0120 sz=)0.4584

r = 1.4 R = 2.140 E = 2.916 ktIJk = 0.00011
Li 0.0000 1.3577 )0.0300 1.0987 )0.3572 1.3466
H 0.6995 )0.7820 1.3823 )0.7083 0.8100 )1.4085
H )0.7005 )0.7816 )1.3532 )0.5963 )0.4537 )1.1440

sx=0.0380 sy=0.0073 sz=)0.2425

r = 1.5 R = 2.504 E = 1.856 ktIJk = 0.00020
Li 0.0000 1.3577 )0.0342 1.6356 0.3973 1.3910
H 0.7496 )1.0314 0.1045 )1.2219 0.4981 )0.4332
H )0.7504 )1.0312 )0.0710 )1.1185 )0.8962 )1.6625

sx=)0.0501 sy=)0.0059 sz=)0.1282

r = 1.77 R = 2.969 E = 1.124 ktIJk = 0.00040
Li 0.0000 1.3577 0.0366 1.6824 )0.3715 1.3883
H 0.8846 )1.6117 0.2212 )1.7126 1.0064 )2.2529
H )0.8854 )1.6115 )0.2586 )1.8353 )0.6358 )1.0009

sx=)0.0503 sy=0.0477 sz=)0.0018

r = 2.1 R = 3.591 E = 1.514 ktIJk = 0.00060
Li 0.0000 1.3577 )0.3088 1.1677 0.2014 1.0619
H 1.0495 )2.2338 1.5533 )2.6672 1.4288 )1.7412
H )1.0506 )2.2334 )1.2456 )1.6100 )1.6853 )2.4302

sx=0.0387 sy=0.0591 sz=0.0420

r = 2.57 R = 4.426 E = 2.480 ktIJk = 0.00073
Li 0.0000 1.3577 0.3514 1.4613 0.1056 1.0109
H 1.2843 )3.0687 0.9260 )2.5155 1.8385 )2.7136
H )1.2857 )3.0683 )1.2788 )3.7251 )1.9454 )3.0767

sx=0.0160 sy=0.0531 sz=0.0467

r = 2.75 R = 4.740 E = 2.832 ktIJk = 0.0007
Li 0.0000 1.3577 )0.0272 0.9932 0.3657 1.3306
H 1.3742 )3.3822 2.0184 )3.2469 1.2384 )2.7386
H )1.3757 )3.3818 )1.9926 )3.1526 )1.6055 )3.9982

sx=0.0477 sy=0.0035 sz=0.0434

r = 3.0 R = 5.167 E = 3.263 ktIJk = 0.0006
Li 0.0000 1.3577 )0.0301 0.9855 0.3654 1.3884
H 1.4992 )3.8099 2.1108 )3.5718 )0.0612 )0.0238
H )1.5008 )3.8094 )2.1425 )3.6752 )1.6318 )4.4544

sx=0.0371 sy=)0.0031 sz=0.0376

r = 3.25 R = 5.578 E = 3.622 ktIJk = 0.00048
Li 0.0000 1.3577 0.0158 1.7473 )0.3674 1.3744
H 1.6241 )4.2203 0.9955 )4.3879 1.7811 )4.8593
H )1.6259 )4.2197 )1.0131 )4.4417 )1.4154 )3.5974

sx=0.0274 sy=)0.0012 sz=0.0319

r = 3.5 R = 5.961 E = 3.908 ktIJk = 0.00034
Li 0.0000 1.3577 0.3701 1.3633 0.0051 0.9435
H 1.7491 )4.6037 1.5555 )3.9763 2.3558 )4.3878
H )1.7509 )4.6032 )1.9275 )5.2362 )2.3627 )4.4047

sx=0.0003 sy=0.0189 sz=0.0266

r = 4.0 R = 6.633 E = 4.296 ktIJk = 0.00015
Li 0.0000 1.3577 0.2299 0.9846 )0.3001 1.0721
H 1.9990 )5.2758 2.3431 )4.7081 )0.0344 )0.0568
H )2.0010 )5.2752 )2.5750 )5.4698 )2.2027 )4.6349

sx=0.0056 sy=0.0043 sz=0.0170
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Table 1. Contd.

Atom x y hIJ
x hIJ

y gIJ
x gIJ

y

r = 4.5 R = 7.216 E = 4.503 ktIJk = 0.00005
Li 0.0000 1.3577 0.3351 1.6084 0.1960 0.9282
H 2.2489 )5.8588 1.7979 )5.4472 2.6348 )5.3299
H )2.2511 )5.8581 )2.1352 )6.5204 )2.8330 )5.9574

sx=0.0010 sy=0.0017 sz=0.0092

Table 2. Cs portion of seam of conical intersection of Li + H2 in Cartesian coordinates. R1 = R (Li ) H1), R2 = R (Li ) H2)

Atom x y hIJ
x hIJ

y gIJ
x gIJ

y

r = 1.270 R = 1.767 R1 = 1.853 R2 = 1.903 c = 92.423° E = 6.227
Li 0.0000 0.0000 )0.0164 )0.2173 0.4241 )0.2597
H 0.6579 )1.7318 1.3475 )1.6114 0.3818 )1.0448
H )0.6103 )1.8025 )1.2835 )1.7056 )0.7583 )2.2298

sx=0.0041 sy=0.2027 sz=0.5230 ktIJk = 0.000017

r = 1.274 R = 1.768 R1 = 1.816 R2 = 1.940 c = 95.937° E = 6.257
Li 0.0000 0.0000 0.0331 )0.2202 )0.1439 )0.7675
H 0.6445 )1.6978 )0.0519 )1.8341 0.9012 )2.1739
H )0.6219 )1.8376 0.0413 )1.9214 )0.7347 )2.1289

sx=0.0097 sy=0.5579 sz=0.0752 ktIJk = 0.000028

r = 1.289 R = 1.773 R1 = 1.760 R2 = 2.005 c = 101.650° E = 6.322
Li 0.0000 0.0000 0.1120 0.7810 0.0575 0.1342
H 0.6227 )1.6457 0.6923 )2.1680 )0.1012 )1.7425
H )0.6409 )1.8995 )0.8226 )2.1582 0.0254 )1.9370

sx=0.5535 sy=0.0420 sz=0.0286 ktIJk = 0.000060

r = 1.320 R = 1.783 R1 = 1.693 R2 = 2.090 c = 108.573° E = 6.468
Li 0.0000 0.0000 0.1062 )0.7303 )0.0958 )0.3438
H 0.5952 )1.5849 0.2480 )1.1488 1.2749 )1.3406
H )0.6644 )1.9811 )0.4233 )1.6870 )1.2483 )1.8816

sx=0.5722 sy=0.1345 sz=0.0404 ktIJk = 0.000088

r = 1.370 R = 1.800 R1 = 1.626 R2 = 2.185 c = 115.576° E = 6.725
Li 0.0000 0.0000 0.1666 0.1202 )0.0590 0.8013
H 0.5655 )1.5246 )0.1990 )1.6501 0.6972 )1.9985
H )0.6895 )2.0729 )0.0916 )2.0675 )0.7622 )2.4003

sx=0.0125 sy=0.6093 sz=0.1160 ktIJk = 0.000119

r = 1.386 R = 1.806 R1 = 1.608 R2 = 2.213 c = 117.485° E = 6.817
Li 0.0000 0.0000 0.1815 )0.1615 0.0541 )0.1615
H 0.7536 )2.0804 1.3358 )2.0537 0.8643 )2.4083
H )0.5158 )1.5230 )1.2794 )1.3881 )0.6806 )1.9901

sx=0.0292 sy=0.6168 sz=0.1339 ktIJk = 0.000128

r = 1.448 R = 1.827 R1 = 1.552 R2 = 2.306 c = 123.330° E = 7.717
Li 0.0000 0.0000 )0.2676 )0.0435 0.1874 0.7742
H 0.5125 )2.2481 )0.0120 )2.1191 0.3456 )2.4981
H )0.6636 )1.4030 1.1285 )1.48862 )0.6842 )1.9272

sx=0.1480 sy=0.6454 sz=0.1090 ktIJk = 0.000153

r = 1.470 R = 1.833 R1 = 1.534 R2 = 2.334 c = 125.066° E = 7.329
Li 0.0000 0.0000 0.2016 0.4057 0.1284 )0.7019
H 0.5213 )1.4427 )0.1595 )1.7440 0.1157 )1.0522
H )0.7276 )2.2183 )0.2484 )2.3227 )0.4504 )1.9069

sx=0.2537 sy=0.6063 sz=0.2166 ktIJk = 0.000178

r = 1.582 R = 1.872 R1 = 1.461 R2 = 2.474 c = 132.331° E = 8.081
Li 0.0000 0.0000 )0.0078 0.0000 )0.7975 0.0000
H 0.4832 )1.3790 )0.3220 )1.4366 0.4686 )0.8361
H )0.7626 )2.3540 )2.2886 0.0000 )2.0994 0.0000

sx=0.0942 sy=0.7338 sz=0.2207 ktIJk = 0.000206

r = 1.772 R = 1.940 R1 = 1.369 R2 = 2.687 c = 141.028° E = 9.466
Li 0.0000 0.0000 0.1555 0.6495 0.3421 )0.4368
H 0.4308 )1.2999 )0.0042 )1.8194 )0.2558 )1.0235
H )0.8152 )2.5608 )0.5358 )2.6908 )0.4708 )2.4003

sx=0.6492 sy=0.5699 sz=0.2536 ktIJk = 0.000262

r = 2.186 R = 2.096 R1 = 1.231 R2 = 3.109 c = 152.727° E = 12.639
Li 0.0000 0.0000 0.7015 0.0000 )0.3301 0.0000
H 0.3410 )1.1831 0.7045 )1.7086 1.0660 )0.8708
H )0.9194 )2.9697 )3.1457 0.0000 )2.9519 0.0000

sx=1.0562 sy=0.3016 sz=0.3395 ktIJk = 0.000457
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